题目:A New Approach for the Mesoscopic and Macroscopic Modeling of Quantum Systems: Application in 2D Materials
报告人:袁声军博士
地点:3号楼401会议室
时间:2016年11月29日(周二)上午10:00-11:00
个人简历:袁声军,荷兰奈梅亨大学助理教授(Tenure-track),计算物理组组长。2001年本科毕业于浙江大学物理系,2003年获得德国锡根大学硕士学位,2008年获得荷兰格罗宁根大学计算物理博士学位。2009-2014年在荷兰奈梅亨大学理论凝聚态物理组从事博士后研究,合作导师为欧洲科学院与荷兰皇家科学院院士Mikhail Katsnelson教授。近年来发展了一套新的计算物理方法,并应用于复杂量子体系的超大尺度模拟,包括对各种电学、光学和输运性质的计算。目前为荷兰理论物理协会会员,欧洲凝聚态物理年会(2016年)二维材料理论与模拟分会主席。
摘要:
A New Approach for the Mesoscopic and Macroscopic Modeling of Quantum Systems: Application in 2D Materials
Shengjun Yuan
Institute for Molecules and Materials, Radboud University,
Heijendaalseweg 135, NL-6525AJ Nijmegen, the Netherlands
The deep understanding of the physical properties of 2D materials requires the study crossing over from microscopic to macroscopic. New quantum phenomena emerge at the mesoscopic and macroscopic level, such as interference effects, quantum confinement effects, and charging effects. For structures with scales larger than 100 nanometers, the ab initio calculations are unfeasible. Tight-binding propagation methods (TBPMs) [1-5] are developed for the modeling of systems range from mesoscopic to macroscopic level, and applied for the calculations of electronic, transport and optical properties. We will give a brief introduction of the methods, and show their applications together with our recent progresses in the study of 2D materials, heterostructures and superstructures, such as the many-body enhancement of insulating states at the additional Dirac points in graphene-hBN heterostructures [6], the modification of optical gap in fluorographene due to (super)structure disorders [7], effects of disorder in the electronic and optical properties of semiconducting black phosphorus [8-9] and transition metal dichalcogenides [10], a new tight-binding model parametrization for black phosphorus with an arbitrary number of layers [11], transition from semiconductor to Dirac semimetal in biased black phosphorus [12], and fractional dimension appeared in the electronic transport in 2D fractals [13]. We will also show how to combine the TBPMs with other well-known numerical methods such as DFT-GW and molecular dynamics, and discuss briefly the extension to many-body problem.
References
[1] S. Yuan, H. De Raedt, M. I. Katsnelson, Phys. Rev. B 82, 115448 (2010).
[2] T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, M. I. Katsnelson, Phys. Rev. Lett. 105, 056802 (2010).
[3] S. Yuan, R. Roldán, M. I. Katsnelson, Phys. Rev. B 84, 035439 (2011).
[4] S. Yuan, T. O. Wehling, A. I. Lichtenstein, M. I. Katsnelson, Phys. Rev. Lett. 109, 156601 (2012).
[5] R. Logemann, K. J. A. Reijnders, T. Tudorovskiy, M. I. Katsnelson, S. Yuan, Phys. Rev. B 91, 045420 (2015).
[6] G. J. Slotman, M. M. van Wijk, P. -L. Zhao, A. Fasolino, M. I. Katsnelson, S. Yuan, Phys. Rev. Lett. 115, 186801 (2015).
[7] S. Yuan, M. Rosner, A. Schulz, T. O. Wehling, M. I. Katsnelson, Phys. Rev. Lett. 114, 047403 (2015).
[8] F. Jin, R. Roldán, M. I. Katsnelson, S. Yuan, Phys. Rev. B 92, 115440 (2015).
[9] S. Yuan, A. N. Rudenko, M. I. Katsnelson, Phys. Rev. B 91, 115436 (2015).
[10] S. Yuan, R. Roldán, M. I. Katsnelson, F. Guinea, Phys. Rev. B 90, 041402(R) (2014).
[11] A. N. Rudenko, S. Yuan, M. I. Katsnelson, Phys. Rev. B 92, 085419 (2015).
[12] S. Yuan, M. I. Katsnelson, R. Roldán, Phys. Rev. B 93, 245433 (2016).
[13] E. van Veen, S. Yuan*, M. I. Katsnelson, M. Polini, A. Tomadin, Phys. Rev. B 93,115428 (2016).